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In the preceding paper, we developed an athermal shear-transformation-zone �STZ� theory of amorphous
plasticity. Here we use this theory in an analysis of numerical simulations of plasticity in amorphous silicon by
Demkowicz and Argon �DA�. In addition to bulk mechanical properties, those authors observed internal
features of their deforming system that challenge our theory in important ways. We propose a quasithermody-
namic interpretation of their observations in which the effective disorder temperature, generated by mechanical
deformation well below the glass temperature, governs the behavior of other state variables that fall in and out
of equilibrium with it. Our analysis points to a limitation of either the step-strain procedure used by DA in their
simulations, or the STZ theory in its ability to describe rapid transients in stress-strain curves, or perhaps to
both. Once we allow for this limitation, we are able to bring our theoretical predictions into accurate agreement
with the simulations.
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I. INTRODUCTION

In the preceding paper �1�, we presented an athermal STZ
theory of plastic deformation in materials where thermal ac-
tivation of irreversible molecular rearrangements is negli-
gible or nonexistent. Here we use that theory to interpret an
extensive body of computational data published recently by
Demkowicz and Argon �2–5�, hereafter referred to occasion-
ally as “DA.” Those authors simulated plastic deformation in
amorphous silicon using a system of 4096 atoms interacting
via a Stillinger-Weber potential �6� in a cubic cell with peri-
odic boundary conditions. They subjected this system to pure
shear under both constant-volume and constant-zero-pressure
plane-strain conditions. Their reports of these simulations are
remarkably complete and detailed. They provide valuable
and challenging information about the relation between
stress-strain response and sample preparation, the theoretical
description of nonequilibrium behavior in systems subject to
steady-state and transient mechanical deformation, the nature
of the glass transition in simulated amorphous silicon and the
strengths and limitations of numerical simulation techniques.
We address each of these topics in the body of this report.

Demkowicz and Argon used two different procedures for
simulating shear deformation. In their potential energy mini-
mization method �PEM�, each step in the process consisted
of a small, affine, shear displacement of all the atomic posi-
tions, followed by a minimization of the potential energy
during which the atoms relax to their nearby positions of
mechanical equilibrium. Supposedly, PEM simulations cor-
respond to the limit of zero strain rate at zero temperature,
but that interpretation is problematic. In their molecular dy-
namics �MD� method, DA used a different step-strain proce-
dure in which each small shear increment was followed by
an MD relaxation at temperature T=300 K, with an average
strain rate of order 108 s−1. In both procedures, an incremen-
tal shear was imposed only after the system was judged to
have reached a stable, stationary state following the preced-
ing step. We argue below that there are important uncertain-

ties associated with both of these step-strain simulation
methods.

The single most important feature of the DA simulations
is that, in addition to measuring the shear stress �and keeping
track of pressure and/or volume changes� during deforma-
tion, DA also observed local atomic correlations within their
system. Here they were taking advantage of their numerical
method to see inside their system in a way that is seldom
possible in laboratory experiments using real materials. They
found that the environments of some atoms were solidlike
and others liquidlike, and that the liquidlike regions seemed
to be, as they say, the “plasticity carriers.” Before any me-
chanical deformation, their fraction of liquidlike regions �
was small when the system was annealed or cooled slowly,
and was approximately 0.5 when the system was quenched
rapidly. Then, during constant-zero-pressure deformations, �
approached a value slightly less than 0.5, independent of its
initial value. Thus, � behaved in a manner qualitatively simi-
lar to the dimensionless effective temperature � or, equiva-
lently, the density of STZ’s ��exp�−1/�� described in Ref.
�1�. The relation between these quantities is one of the main
topics to be addressed in this paper.

Amorphous silicon, similar to water, expands as it solidi-
fies. Moreover, its properties are highly sensitive to small
changes in density. A slowly quenched, more nearly equili-
brated system is less dense than one that is rapidly quenched,
because the former contains a smaller population of denser,
liquidlike regions than the latter. When strained, the more
nearly equilibrated system initially responds elastically, and
takes longer than a rapidly quenched system to generate
enough plasticity carriers to enable plastic flow. Accordingly,
the equilibrated system exhibits a more pronounced stress
peak of the kind illustrated in Fig. 1 �top curve, upper panel�
of Ref. �1�. As the liquidlike fraction � increases, the system
contracts if held at constant pressure; or else, if the system is
held at constant volume, the pressure decreases and may
even become negative. It may be surprising to theorists but
nevertheless is true that, in this material, the STZ’s must be
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associated with decreases rather than increases in free vol-
ume.

For theoretical purposes, it will be simplest to look only at
constant-pressure simulations, because the changes in pres-
sure that occur at constant volume require additional, hard-
to-control approximations for behaviors that are not intrinsic
to the STZ hypotheses. System-specific parameters such as
the yield stress sy are likely to be more sensitive to changes
in pressure than in volume. For example, the Mohr-Coulomb
effect implies that sy increases with pressure. Demkowicz
and Argon point out that direct evidence for pressure depen-
dence can be seen in the graphs of the liquid fraction � as a
function of strain � in Figs. 10�c� and 15�c� of Ref. �3�. In
the constant-zero-pressure simulations shown in their Fig.
15, � equilibrates to approximately the same value after de-
formation for all four different initial conditions. That does
not happen in the constant-volume simulations in Fig. 10,
implying that the internal states of these deformed systems
differ from one another in nontrivial ways.

In addition to the questions pertaining to step-strain pro-
cedures, to be discussed in detail in Sec. IV, there are other
limitations of the DA simulations that must be taken into
account. The DA simulation system is too small to make it
likely that more than one STZ-triggered event is taking place
within a characteristic plastic relaxation time; and data is
reported only for single numerical experiments performed on
individual samples rather than averages over multiple experi-
ments. Thus, fluctuations are large, and the results must be
sensitive to statistical variations in initial conditions. In
short, we must be careful in our interpretations.

On the positive side, Demkowicz and Argon’s remarkable
combination of multiple simulation methods and multiple
observations allows us to use the athermal STZ theory to
construct what we believe is an internally self-consistent in-
terpretation of their data. Going beyond their stress-strain
curves, and focusing on the behaviors of the liquidlike frac-
tion � and the density �, we develop a quasithermodynamic

picture in which the effective disorder temperature � plays a
dominant role. In this picture, the STZ’s, i.e., the active flow
defects, are rare sites, out in the wings of the disorder distri-
bution, that are more susceptible than their neighbors to
stress-induced shear transformations. They almost certainly
lie in the liquidlike regions of the system, but only a very
small fraction of the liquidlike sites are STZ’s. The energy
dissipated in the STZ-initiated transitions generates the ef-
fective temperature �, a systemwide intensive quantity that,
in turn, determines extensive quantities such as � and �.

Our central hypothesis is that there exist quasithermody-
namic equations of state relating steady-state values of � and
� to � �and also, in principle, to the pressure and shear
stress�. Once we have found these equations of state, we
extend the quasithermodynamic model to describe the way in
which � and � fall in and out of equilibrium with � during
transient responses to external driving forces. In this way, we
arrive at a quantitative interpretation of the DA simulations.

We begin in Sec. II with a brief summary of the athermal
STZ theory developed in Ref. �1�. Section III contains a pre-
liminary analysis of the DA stress-strain data. In Sec. IV, we
explain why we cannot accept the initially good agreement
between the STZ theory and the simulation data. These ar-
guments motivate the quasithermodynamic hypothesis, intro-
duced in Sec. V. We extend the quasithermodynamic ideas to
nonequilibrium situations in Sec. VI. Finally, in Sec. VII, we
conclude with some speculations concerning the validity of
the quasithermodynamic picture and its relation to the STZ
theory in general.

II. STZ SUMMARY

In order to make this paper reasonably self-contained, we
start by restating Eqs. �3.12�–�3.16� in Ref. �1�. The first of
these equations is an expression for the total rate of defor-
mation tensor Dtot= �̇ /2 as the sum of elastic and plastic
parts

Dtot =
ṡ̃

2	̃
+ Dpl�s̃,m,�� , �2.1�

where s̃ and 	̃ are the deviatoric stress and the shear modu-
lus measured in units of the yield stress sy. The internal state
variables m and � are, respectively, the orientational bias
and the scaled density of STZ’s. We consider only the case of
pure, plane-strain shear in which the material is strained at a
fixed rate �̇, and the stress is measured as a function of the
strain �. To describe such experiments, we write Eq. �2.1� in
the form

ds̃

d�
= 	̃�1 −

2
0�

�̇�0

q�s̃,m�� , �2.2�

where 
0 is a number of order unity �the atomic density in
atomic units multiplied by the incremental strain associated
with an STZ transition�, �0 is the characteristic time scale for
STZ transitions, and

FIG. 1. �Color online� Theoretical stress-strain curves �solid
lines� compared to the DA numerical simulation data �3�. The pa-
rameters used are 
0=1, sf =1.06 GPa, 	=46 GPa, sy =0.35 GPa,
c0=0.18, and ��=0.065. The initial effective temperatures are
�0=0.0559,0.0580,0.0612,0.0680 �from top to bottom�. The
curves are shifted by 0.5 GPa for clarity.
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q�s̃,m� � C�s̃�� s̃

�s̃�
− m� . �2.3�

The function C�s̃� describes the stress dependence of the STZ
transition rate; it is proportional to �s̃−1� for �s̃�1 and van-
ishes smoothly near s̃=0. As defined by Eq. �3.6� in Ref. �1�,
the smoothness of C�s̃� near s̃=0 is determined by a param-
eter �, which we take to be unity throughout the following.

Similarly, we restate Eqs. �3.9�, �3.10�, and �3.11� from
Ref. �1�:

dm

d�
=

2

�̇�0

q�s̃,m��1 −
ms̃

�
e−1/�� , �2.4�

d�

d�
=

2

�̇�0

s̃q�s̃,m��e−1/� − �� , �2.5�

and

d�

d�
=

2
0

c0�̇�0

�s̃q�s̃,m���� − �� . �2.6�

The constant c0 is a configurational specific heat per atom in
units kB, which must be of order unity.

We assume that the stress and strain tensors in these equa-
tions remain diagonal in two dimensional pure shear and
plane strain, and that any correction in the third dimension is
negligible in comparison to other uncertainties in this analy-
sis. A basic premise of the STZ theory is that the zones are
rare and do not interact with each other; thus we assume
from the beginning that the quantity 
0 exp�−1/�� is small of
order 10−3 �in fact, very much less�, so that the equations for
m��� and ���� are stiff compared to those for s̃��� and ����.
Then we can safely replace Eqs. �2.4� and �2.5� by their
stationary solutions

m = m0�s̃� = 	 s̃/�s̃� if �s̃� � 1,

1/s̃ if �s̃� � 1,

 �2.7�

and

� = e−1/�. �2.8�

Eqs. �2.2� and �2.6� become

ds̃

d�
= 	̃�1 −

2
0

q0
e−1/�q�s̃�� �2.9�

and

d�

d�
=

2
0

c0q0
e−1/�s̃q�s̃���� − �� , �2.10�

where

q�s̃� = C�s̃�� s̃

�s̃�
− m0�s̃�� �2.11�

and q0= �̇�0.

III. FIRST FITS TO THE DA STRESS-STRAIN CURVES

The first step in our STZ analysis of the DA data is to use
Eqs. �2.9�–�2.11� to fit the stress-strain curves in Fig. 15�a� of

Ref. �3�, shown here in Fig. 1. These two equations involve
the parameters q0 �the dimensionless strain rate�, sy �needed
in order to convert from dimensionless stresses s̃ to measured
stresses in units GPa�, 	̃, c0, ��, and the four initial values of
the effective temperature ��0�=�0.

We can obtain a certain amount of information about
these parameters directly from features of the stress-strain
curves before doing any computation. Note from Eqs. �2.7�
and �2.11� that no plastic deformation occurs for s̃�1, no
matter how large � might be. Thus the lowest observed value
of a stress that marks a departure from elastic behavior is an
upper bound for sy. The bottom stress-strain curve in Fig. 1,
which is the curve with the largest initial value of �, seems
to have a break point that is about a factor of three less than
the flow stress sf, which we see from the figure is about
1.06 GPa. Therefore, sy �sf /3�0.35 GPa, and s̃ f �3. We
take the shear modulus 	�46 GPa directly from the slope
of the stress-strain curves in the elastic region; thus we
choose 	̃�130. Setting the right-hand side of Eq. �2.9� to
zero, we find that the flow stress s̃ f satisfies

q0 = �̇�0 = 2
0e−1/��q�s̃ f� . �3.1�

Using this relation with the DA estimate of �̇ and the value
of �� given below, we confirm that �0 is of order femtosec-
onds as implied by the Stillinger-Weber interactions used in
these simulations.

Once we have inserted Eq. �3.1� into Eqs. �2.9� and
�2.10�, we can solve these equations and vary the remaining
parameters to fit the stress-strain curves in Fig. 15�a� of Ref.
�3�. We find that the fits are disappointingly insensitive to our
choice of 
0 exp�−1/��� so long as we stay within our con-
straint that this product be small. However, our later analysis
of the liquidlike fraction � reveals that the internally consis-
tent value of �� is 0.065, which is slightly bigger than our a
priori order-of-magnitude estimate based on the experimen-
tal data, as shown in Ref. �7� for example, but seems well
within the accuracy of our approximation for �� in Ref. �8�
and the uncertainties of these small-scale simulations. There-
fore we have chosen 
0=1 and ��=0.065. Agreement be-
tween theory and the numerical simulations then can be ob-
tained for all four of the stress-strain curves by setting
c0=0.18 and adjusting only �0 for each curve. Our best-fit
results are shown in Fig. 1. The corresponding values of �0
�from top to bottom in the figure� are 0.0559, 0.0580, 0.0612,
0.0680. Note that there is a gap in �0 between the lowest
three values, for which the stress-strain curves are peaked,
and the largest, which shows no peak.

If it were useful to do so, we could improve the agreement
between the simulated stress-strain curves and our theory by
making small adjustments of sy and 	̃ for each curve, con-
sistent with the likelihood that the four relatively small com-
putational systems are not exactly comparable to each other
in their as-quenched states. In the spirit of the discussion to
follow, however, we have chosen to assume that the four
systems reach effectively identical steady states after persis-
tent shear deformation, and to attribute the small discrepan-
cies to the statistical uncertainties visible in the data. The
only systematic feature of the stress-strain data that is not
recovered by the theory is the slow decrease of the flow
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stress with increasing strain in the top curve �the one with the
most pronounced stress peak�. We believe that this behavior
is caused by the emergence of a nascent shear band as illus-
trated in Fig. 16�b� of �3�.

IV. SECOND THOUGHTS

Fitting the stress-strain curves, however, is only a part of
the challenge of interpreting the DA data �3�. We also must
understand how the liquidlike fraction � and the density �
relate to our STZ variables, especially the effective tempera-
ture �. Therefore, it is essential to know whether we can trust
the values of �0 deduced from the STZ analysis of the stress-
strain curves. We argue in the following paragraphs that
these values are not quantitatively reliable.

One of the key tenets of plasticity theory is that transient
peaks observed in the stress-strain curves for well annealed
samples occur because there is an initial lack of plasticity
carriers in these systems, and new carriers must be generated
by deformation before plastic flow can begin and the stress
can relax. Demkowicz and Argon use the correlation be-
tween stress peaks and the liquidlike fraction � to argue that
� is a direct measure of the population of plasticity carriers.
The STZ theory, as presently constituted, predicts stress
peaks when—and only when—the initial STZ density is
small.

This tenet is not confirmed by the DA simulations. Note
first the data for � as a function of strain � shown by DA in
Fig. 15 of Ref. �3�, also shown here in Fig. 6. There are four
curves. Two of them have small initial values of ���=0�
=�0 and exhibit stress peaks. The corresponding values of
���� rise monotonically to the steady-state value ���0.46
as expected. Another curve starts with �0���. The corre-
sponding stress-strain curve has no peak, and ���� decreases
to ��, again in accord with expectations. In one case �the one
with �0�0.46�, however, �0 is slightly above �� but the
stress still shows a peak. Moreover, the corresponding den-
sity � decreases with �, implying that the denser liquidlike
fraction is decreasing during the deformation.

This kind of behavior appears elsewhere in the DA papers
�2–5�. It is clear in the constant-volume, MD simulations,
where one of the stress-strain curves has a peak, but the
corresponding ���� remains nearly constant, and the pres-
sure increases instead of decreasing as it should if the liquid-
like fraction were growing. And, as we note below, all of the
PEM simulations in Ref. �4� show stress peaks, even the
ones in which �0 is large and comparable to ��.

It seems to us that the most likely explanation for these
discrepancies is that the ubiquitous stress peaks are artifacts
of the step-strain simulations. It is also quite possible, of
course, that the STZ theory does not adequately account for
the way in which stresses respond to rapid changes in the
strain rate, and that the DA simulations are simply out of
range of our STZ analysis. Perhaps both explanations are in
part correct. Nevertheless, we prefer the first explanation for
the following reasons.

Demkowicz and Argon performed only MD simulations,
and not PEM, at constant pressure; but a number of features
of their PEM results may be relevant here. They report that

cascades of events were evident in their PEM simulations but
were hard to detect in MD. Maloney and Lemaitre �9,10�,
who used only PEM, found that cascades were prevalent and
sometimes so large that they spanned their systems, which
were only two dimensional but larger in numbers of atoms
than those used by DA. A related feature of the DA PEM
simulations is that, even for rapidly quenched samples with
large initial disorder, the stress-strain curves exhibit marked
stress peaks followed by strain softening. We suspect that
these behaviors may be generally characteristic of step-strain
processes, and correspondingly uncharacteristic of continu-
ous strain mechanisms that are more common in the labora-
tory.

Note that, between each strain increment in PEM, the sys-
tem has a probability of dropping into a low energy state
from which it cannot escape without the application of a
large force. The large energy released when such a trapped
state is destabilized may trigger cascades of smaller events.
This trapping mechanism may be especially important at the
beginning of a shear deformation, because then the energy
minimization starts with a disordered, as-quenched system.
As a result, the first energy drops may be large, and the
initial stresses required to set the system into motion may be
anomalously high. Thus we expect transient stress peaks in
PEM, even for initially disordered systems; and we expect
large stress fluctuations even in steady-state conditions. That
is exactly what is seen by Demkowicz and Argon.

The difference between step strains and continuous shear
has been demonstrated recently in bubble raft experiments
by Twardos and Dennin �11�. Similar to Demkowicz and
Argon, these authors subjected their strictly athermal system
to both steady, slow shear and to discrete shear steps fol-
lowed by relaxation periods long enough for most motion to
cease. They monitored the stress during both procedures,
with particular interest in the distribution of stress drops as-
sociated with irreversible plastic rearrangements. One of
their most interesting results is that the average size of stress
events decreases with decreasing shear rate for continuous
strain, but increases for step strains. That is, the stress relaxes
via a larger number of smaller drops for continuous defor-
mation than for step-strain motion. Their interpretation of
this result seems to us to be roughly consistent with our
discussion of PEM simulations in the preceding paragraph;
but neither they nor we claim a full understanding of this
phenomenon

In their MD simulations, Demkowicz and Argon use step
strains as opposed to a continuous strain rate. Apparently,
allowing the system to relax for a time at T=300 K between
strain steps removes the effects of at least some of whatever
structural irregularities are producing cascades and stress
peaks in the PEM simulations. It seems likely, however, that
some elements of the athermal PEM-like, step-strain behav-
ior persist in the MD results. Our hypothetical low-energy
trapping states may be less likely to be sampled in step-strain
MD, in which case the initial transients and steady-state
stress fluctuations might be smoother, as indeed they are. But
the step-strain MD procedure is not the same as a continuous
one in which the strain is incremented on the time scale at
which the molecular motions are resolved. In the DA simu-
lations, the strain is incremented only once in about ten or
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more atomic vibration periods. We see little reason to believe
that these two simulation procedures will produce precisely
the same responses to rapidly changing driving conditions.
This situation forces us to conclude—reluctantly in view of
the quality of the apparent agreement between the simula-
tions and STZ theory shown in Fig. 1—that the values of the
�0’s stated above and in the caption to Fig. 1 cannot be
trusted.

V. QUASITHERMODYNAMIC HYPOTHESES

Our inability to deduce the �0’s from the stress-strain data
has led us to probe more deeply into the meaning of the
effective temperature in glass dynamics. We base our analy-
sis on a set of quasithermodynamic hypotheses in which we
assume that the steady-state properties of the configurational
degrees of freedom below the glass transition are determined
by the effective temperature Teff= �ESTZ/kB��, in close anal-
ogy to the way in which they are determined by the bath
temperature T above that transition. In true thermodynamic
equilibrium, extensive quantities such as the density �, the
internal energy U, or the liquidlike fraction � in the DA
simulations are functions of T and the pressure P. In other
words, these quantities obey equations of state. Below the
glass transition, the configurational degrees of freedom—that
is, the positions of the atoms in their inherent states—fall out
of equilibrium with T because thermally activated rearrange-
ments are exceedingly slow or impossible. The most prob-
able configurations in such situations maximize an entropy,
thus the statistical distribution of these configurations is
Gibbsian with T=Teff.

Accordingly, our first hypothesis is that the high-T equi-
librium equations of state are preserved in the glassy state as
expressions for the configurational parts of the extensive
quantities �, U, �, etc., in terms of the intensive quantities
Teff, P, and the shear stress s. In particular, we propose that
the effective temperatures �0, multiplied by ESTZ/kB, are the
bath temperatures T0 at which the DA simulation samples
fell out of thermal equilibrium during cooling, and that the
configurational parts of �, U, �, etc., were fixed at those
temperatures. Our specialization to configurational parts rec-
ognizes that, for example, � undergoes ordinary thermal ex-
pansion at small T and that the total internal energy U in-
cludes the kinetic energy. Both of those nonconfigurational
parts are uninteresting for present purposes. Since we con-
sider only P=0 situations and work only at fixed T, we omit
explicit dependences on those variables. Shear dilation may
be relevant, especially for determining �; but so long as we
are considering only predeformation properties with s=0, we
also omit explicit s dependence. We return later to the ques-
tion of shear dilation, and we also postpone a discussion of
the potential energy. For the moment, we write simply
�=�0���, �=�0���.

As a first test of this hypothesis, we show by the open
circles and dashed lines in both panels of Fig. 2 the functions
�0��� and �0��� obtained with the measured values of �0 and
�0 and our best-fit values of �0 from Fig. 1. We do, in fact,
find qualitatively plausible behavior. With our uncertainties
about the �0’s, however, we are obliged to look harder and
bring other considerations to bear on this analysis.

We know some qualitative features of these equations of
state. First, we are dealing with a glass transition, and there-
fore we expect that �0��� should extrapolate to some fixed
value, possibly zero, at a nonzero Kauzmann temperature. In
the following discussion, we define �K to be the effective
temperature at which the extrapolated �0��� vanishes; but we
make no assumption about whether this is actually a Kauz-
mann temperature, or whether an ideal glass transition actu-
ally occurs at this or any other point.

Another feature is suggested by the binary, solidlike/
liquidlike, nature of the atomic structure described by
Demkowicz and Argon. If this were just a simple binary
mixture, and if the energy of the mixture were proportional

FIG. 2. �Color online� Upper panel: The equation of state
�=�0��� obtained by fitting the four data points �filled circles� plus
��=�0����=0.458 �filled square�. The �0’s are the DA numerical
simulation data �3�; the adjusted �0’s are 0.0559, 0.0589, 0.0663,
and 0.0749, with ��=0.065. The solid line is our fit to these points
in Eq. �5.1�. The open circles are the observed �0’s plotted against
the unadjusted, best-fit, �0’s. The dashed line is intended only as a
guide for the eye. Lower panel: The equation of state �=�0���
obtained by a procedure similar to the one described above except
that the point ��=1.0335 �filled square� is not included in the fit.
We attribute its displacement from the equation of state to a stress-
induced dilation. The density is normalized by �c, the density of
crystalline silicon �diamond cubic�. The solid line is our smooth fit
to the data. Again, the open circles and and dashed line indicate the
unadjusted equation of state.
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just to the density of the higher energy, liquidlike compo-
nent, then the entropy would be a maximum at �=1/2 and
the temperature would diverge at that point. Obviously,
amorphous silicon is not so simple. Nevertheless, the ob-
served � does seem to have an upper bound not too far
above �=1/2; thus, we expect that �0��� saturates at some
value �0=�lim�0.55 for large �.

Yet another consideration is that, in principle, we ought to
be able to deduce the T0’s directly from the graphs of density
versus temperature for different quench rates shown in Fig. 1
of Ref. �3�. The slowest quench is the closest to full equilib-
rium, and the points at which the faster quenches fall away
from it are the three higher T0’s. The lowest T0 must be near
the inflection point on the slow-quench curve. Unfortunately,
the best we can do with the data at hand is estimate the T0’s
to about ±20 K, and even then we must be cautious about
systematic uncertainties in the simulations. Nevertheless, we
can use this process as a rough check on the modifications of
the �0’s that we propose below.

We come now to our second and more speculative
hypothesis—that the point ���, ��� ought to lie on the equi-
librium equation-of-state curve; that is, ��=�0����. Here we
are assuming that persistent shear deformation in an athermal
system rearranges the atomic configurations in a way that is
statistically equivalent to thermally driven rearrangement,
except that the relevant temperature is the effective disorder
temperature Teff instead of the bath temperature T. We also
are assuming that ��, being a ratio of two populations, is
insensitive to changes in the volume of the system that might
occur during constant-zero-pressure simulations. In contrast,
�� would decrease if, for example, the system undergoes a
shear-induced dilation.

With these considerations in mind, our next step is to
refine the estimates of the T0’s by requiring that they produce
smooth equations of state with the qualitative features hy-
pothesized above, and that the observed ���0.458 be equal
to �0����. Accordingly, we have computed �=�0��� and
�=�0��� by adjusting the �0’s so as to optimize agreement
with all the previously discussed constraints. Our results are
shown by the solid lines in Fig. 2. As expected,
����0����, because the flow stress s̃ f at that point seems
easily large enough to cause dilation. �Throughout this paper,
values of � are in units of �c=2323.8 kg/m3, the density of
crystalline, diamond-cubic, silicon.� The effective Kauzmann
temperature is �K=0.051, and the upper bound for � is
�lim=���→���0.6. The smooth curve that we have fit to
the equation of state for �, shown in the upper panel of
Fig. 2, is

�0��� = �lim�1 − e−a��−�K�� , �5.1�

where a=100. Other important parameters are the four
T0’s: 1100, 1160, 1305, 1475 K, which are consistent with
our crude direct estimates from Fig. 1 in Ref. �3�. Note that
the large gap between the lowest three unadjusted T0’s
and the upper one has disappeared, and that the adjusted
points fit on a smoother curve than the unadjusted ones. We
also find that T�=1280 K. Then, with ��=0.065, we obtain
ESTZ/kB�21 000 K, or about 1.3 eV. The associated values
of �0 are 0.0559, 0.0589, 0.0663, and 0.0749.

Using these adjusted values of the �0’s, we have recom-
puted and plotted the stress-strain curves in Fig. 3, shown
again in comparison with the simulation data. As expected,
the non-STZ peak has disappeared, and there is more round-
ing in the bottom, most rapidly quenched case, but the stress
peaks for the two most deeply quenched systems remain al-
most unchanged.

Finally, within the context of quasithermodynamic equi-
librium, we note that a relation between the potential energy
and � has been proposed and confirmed by Shi et al. �12�
These authors describe molecular-dynamics simulations of
shear banding in two-dimensional, noncrystalline, Lennard-
Jones mixtures. Their analysis of these simulations goes be-
yond our own in at least one important way. They note that
the plastic strain rate predicted by the STZ theory, as well as
by other flow-defect theories, has the form exp�−1/�� mul-
tiplied by a function of the shear stress, essentially our factor
q�s̃� defined in Eq. �2.11�. Force balance requires that s̃ be a
constant across the shear band, thus a measurement of the
position-dependent strain rate is a measure of the position
dependence of �. Shi et al. then postulate that the potential
energy depends linearly on �. They compute the position-
dependent potential energy directly from their simulation
data and find that it maps accurately onto � as predicted by
the spatially varying strain rate. The importance of this ob-
servation is that they are looking at a weakly nonequilibrium
situation in which the potential energy and � are varying
continuously in space, but only very slowly in time, along
the postulated linear equation of state. Their system remains
in quasithermodynamic equilibrium during this variation be-
cause, unlike the DA simulations discussed here, it is not
undergoing a fast transient response to a sudden change in
the applied stress. Thus their result anticipates and fits accu-
rately into our quasithermodynamic picture.

VI. DEPARTURES FROM QUASITHERMODYNAMIC
EQUILIBRIUM

The next question is whether the equilibrium equations of
state shown in Fig. 2 are obeyed under nonequilibrium con-

FIG. 3. �Color online� Modified stress-strain curves using
�0=0.0559, 0.0589, 0.0663, and 0.0749 �from top to bottom�. All
other parameters are the same as those used in Fig. 1.
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ditions during deformation. Apparently they are not. To see
this, in Fig. 4, we have added to our equation-of-state graphs
four data sets showing the observed values of � and � as
functions of our calculated values of � for the four different
deformation histories. In all cases, the observed values of �
and � initially fall off the equilibrium curves and do not
come together again until they approach ��. This nonequi-
librium behavior can be seen more directly by comparing the
three panels of Fig. 15 in Ref. �3�. It is clear there that the
rate at which the stress relaxes to the flow stress is faster than
the rates at which either � or � relax to their steady-state
values.

To account for the transient, nonequilibrium behavior of
�, we propose an equation of motion analogous to Eq. �17�
in Ref. �5�, but with a form similar to our Eq. �2.10�:

d�

d�
=

2
0

c1q0
e−1/�s̃q�s̃���0��� − �� , �6.1�

where c1 is a constant similar to c0. The idea here is that the
disorder described by � may rise at its own rate, but the
liquidlike-solidlike reorganization associated with � may not
catch up instantaneously. We assume that the underlying
mechanism that determines these rates is still the rate of en-
ergy dissipation. There is no other comparably simple and
basic coupling between mechanical deformation and the in-
ternal degrees of freedom that satisfies the requirement that it
be a non-negative scalar. Note that Eq. �6.1� is supplemen-
tary to the STZ equations of motion, Eqs. �2.9� and �2.10�; it
assumes that the intensive quantities s̃��� and ���� are un-
changed from the STZ predictions and that they continue to
control the behavior of � even away from equilibrium. This
is a strong assumption, especially near the initial stress tran-
sients where we already know that there is some mismatch
between the STZ theory and the DA simulations.

Our results for the four functions ����, determined using
Eq. �6.1�, are shown in Fig. 5. The corresponding functions
���� are shown in Fig. 6, here in comparison with the DA
data. The only adjustable parameter is c1, which we choose
to be 0.42. The agreement seems to be within the uncertain-
ties of the data.

We continue our development of the nonequilibrium qua-
sithermodynamic theory by writing an equation analogous to
Eq. �6.1� for the function ����:

d�

d�
=

2
0

c1q0
e−1/�s̃q�s̃���0��� − � − ��0� . �6.2�

Here, ��0�0.012 is the dilation-induced shift of the equilib-
rium density shown by the displacement of �� from the equi-
librium curve �0��� in the lower panel of Fig. 2. To integrate
Eq. �6.2�, we have approximated �0��� by a smooth polyno-
mial. The factor c1=0.42 needed to fit the density data is the
same as in Eq. �6.1�. The corresponding graphs of ����,
along with the DA data, are shown in Fig. 7. Again, the
agreement seems to be within the uncertainties; but here we
are pushing the theory too far for comfort. Our quasithermo-
dynamic hypotheses imply that �0��� ought to be a function
of the shear stress s̃ as well as �, and that the dilation ap-
proximated here by ��0 should be part of that generalized
equation of state. In particular, ��0 should be the dilational
change in the density when s̃ is equal to the flow stress s̃ f.
We have in fact tried ��0� s̃2 �as in nonlinear elasticity�, but
the results are distinctly unsatisfactory at small � where nei-
ther Eq. �6.2� nor the STZ theory itself may accurately de-
scribe the fast transient. Equations �6.1� and �6.2� do account
for the relatively slow relaxation of ���� and ���� as com-
pared to that of s̃���. This level of success seems to be as
much as we can expect from the theory at this stage in its
development.

VII. SUMMARY AND CONCLUDING REMARKS

The unique aspect of the Demkowicz and Argon simula-
tions is their measurement of extensive quantities—the mass

FIG. 4. �Color online� Upper panel: The DA numerical simula-
tion data for � versus the theoretical � for the four cases considered
in Ref. �3�. The discrete markers sets, from top to bottom, corre-
spond to the largest initial � �fastest quench� down to the smallest
initial � �slowest quench�, respectively. The equation of state
�=�0��� �solid line� was added to stress the nonequilibrium nature
of the deformation-induced dynamics of �. Lower panel: The cor-
responding plot for � /�c. The discrete markers sets, from top to
bottom, correspond to the largest initial � �fastest quench� down to
the smallest initial � �slowest quench�, respectively. The points
��� ,��� and ��� ,��� are marked by solid squares.
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density � and the liquidlike fraction �—in parallel with con-
ventional stress-strain curves. They argue convincingly and
importantly that � is closely related to the density of plastic-
ity carriers. However, their remarkably complete report in-
cludes some results that make it seem that this relationship
may be neither simple nor direct. The main purpose of our
investigation has been to learn more about that relationship.

Our proposed interpretation of the DA simulations is
based on the athermal STZ theory �1�, which we believe
captures the central features of amorphous plasticity—at
least for processes that are not too rapidly varying as func-
tions of space or time. In order to discuss quantities such as
�, however, we have had to go beyond the STZ theory. We
have hypothesized that, in low-temperature, steady-state,
nonequilibrium conditions � and � and presumably other

such quantities are related to the effective disorder tempera-
ture � via quasithermodynamic equations of state. With this
hypothesis, we have developed a theoretical interpretation of
the DA simulations that seems physically satisfying, inter-
nally self-consistent, but interestingly incomplete. If con-
firmed by further tests, this quasithermodynamic theory
could become a useful tool for predicting the nonequilibrium
mechanical behavior of amorphous solids.

There are many open issues. Perhaps the most urgent of
these is the interpretation of the DA step-strain simulation
technique. The DA data do show that a well annealed sample
with an initially small � exhibits a transient peak in its
stress-strain curve. However, the converse seems not neces-
sarily to be true. Stress peaks sometimes appear in the DA

FIG. 5. �Color online� Upper panel: � as a function of � using
the nonequilibrium Eq. �6.1� with c1=0.42. The equilibrium equa-
tion of state was added for illustration. The curves, from top to
bottom, correspond to the largest initial � �fastest quench� down to
the smallest initial � �slowest quench�, respectively. These curves
should be compared to the DA data shown in the upper panel of Fig.
4. Lower panel: � as a function of � using the nonequilibrium Eq.
�6.2� with c1=0.42. The curves, from top to bottom, correspond to
the largest initial � �fastest quench� down to the smallest initial �
�slowest quench�, respectively. These curves should be compared to
the DA data shown in the lower panel of Fig. 4. The points ��� ,���
and ��� ,��� are marked by solid squares.

FIG. 6. �Color online� Theoretical predictions of ���� for all
four quenches, based on Eq. �6.1� with c1=0.42, compared with the
DA simulation data. The discrete markers sets and the solid lines,
from top to bottom, correspond to the largest initial � �fastest
quench� down to the smallest initial � �slowest quench�,
respectively.

FIG. 7. �Color online� Theoretical predictions of ���� for all
four quenches, based on Eq. �6.2� with c1=0.42, compared with the
DA simulation data. The discrete markers sets and the solid lines,
from top to bottom, correspond to the largest initial � �fastest
quench� down to the smallest initial � �slowest quench�,
respectively.
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results in cases where the initial � is large and does not
increase during plastic deformation, a behavior that is incon-
sistent with the presumed relation between � and the density
of plasticity carriers. After examining other possibilities and
looking at other examples of step-strain procedures �see Sec.
IV�, we have concluded that the stress peaks observed in
cases with large initial � are most likely artifacts of the
numerical step-strain procedure. Once we allowed ourselves
that flexibility and found alternative ways of estimating the
initial effective temperatures for those cases, we found that
our quasithermodynamic picture fits together quite well.

In our opinion, one of the most important next steps in
determining the limits of validity of the quasithermodynamic
STZ theory would be to redo the DA analysis, including the
measurement of the liquidlike fraction �, with continuous
strain MD. So far as we know, nobody before Demkowicz
and Argon has ever done anything similar to this—making
independent, simultaneous measurements of the density of
plasticity carriers and the stress-strain response for differ-
ently quenched systems. Discovering the relation between
continuous and step-strain simulations in this context seems
likely to be extremely useful at least for understanding the
numerical simulations. It could also be a big step forward in
understanding amorphous plasticity.

Another obviously open issue is the validity of the STZ
theory in situations where the system is responding to rapid
changes in loading conditions, as in the DA numerical simu-
lations where the strain rate is large and is turned on instan-
taneously both at the beginning of the process and at each
strain step. The present version of STZ theory �1� is a mean-
field approximation in which interactions between zones are
included only on average, and fluctuations are neglected. It is
possible that neither the STZ theory as presently formulated,
nor the conventional explanation of stress peaks in terms of
plasticity carriers, can fully account for stress transients dur-
ing rapid changes in loading conditions, even in continuous-
strain MD simulations. From this point of view, a
continuous-strain version of the DA simulations seems dou-
bly important. If new simulations showed no qualitative dis-
crepancy between continuous and step-strain procedures, we
would know that the STZ theory is missing some essential
ingredients. We might then try to include correlations and
fluctuations by developing a more detailed statistical theory
of STZ’s with varying thresholds, perhaps with noisy inter-

actions between them as proposed recently by Lemaitre and
Caroli �13�.

In a similar vein, we must ask about the limits of validity
of our quasithermodynamic hypotheses. It will be especially
important to look harder at Eqs. �6.1� and �6.2�, which deter-
mine the rates at which � and � relax to their quasithermo-
dynamic equilibrium values. Our quasithermodynamic pic-
ture is based on the assumption that the effective temperature
� is the intensive variable—the thermodynamic force—that
drives the extensive quantities �, �, and the STZ variables �
and m. According to our equations of motion, � and m are
tightly slaved to �. We have postulated equations of state
relating � and � to � under equilibrium or steady-state con-
ditions, and have further proposed in Eqs. �6.1� and �6.2�, on
what seem to us to be general grounds, that � and � are more
loosely slaved to � than are � or m during excursions from
equilibrium. Here, as in the questions regarding the stress
response, we need to learn whether the equations of motion
for � and � are accurate when those excursions from equi-
librium are faster, say, than the relaxation rate of �.

In short, we are asking how far this theory can be pushed.
Can it, for example, always be used to predict stress-strain
transients under realistic experimental conditions, where
strain rates are very much smaller than those in MD simula-
tions? Or does it generally become inaccurate near stress
peaks? Can it be used to predict plastic deformation near the
tip of an advancing crack? More generally, is the effective
temperature � really such a dominant state variable? What
other internal variables might become relevant for describing
fast processes? What real or computational experiments
might help to answer such questions?
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